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Abstract

Many demand models rely on the characteristics-space approach to represent products and estimate

consumer preferences. A practical limitation with the approach in some markets is that if demand-

relevant characteristics are not observed, the substitution patterns the model predicts are unreliable.

To address this limitation, this paper proposes a method of learning substitution patterns directly from

search data. The approach is to treat the sets of products that consumers search for as their revealed

consideration set, and measure product substitution between a pair of product by their frequency of

co-searches across all consumers’ search sets. This substitution measure can then be mapped to vectors

of latent characteristics representing each product. I validate the latent characteristics by using them

as an input to a simple predictive demand model applied to data on online shopping at a large UK

eCommerce platform. The aim is to predict which product a consumer will purchase given the set

of previously searched products, as in a recommender system. I find that representing products with

latent characteristics leads to improvement in prediction performance. These findings are supported by

replicating the empirical analysis within a Monte Carlo simulation of consumer search.
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participants at Queen’s University and members of the IO Working Group at Queen’s University for their invaluable comments
and suggestions. I am a graduate student at Queen’s University. This work is part of my thesis. All mistakes are my own.
Please contact m.hanzroh@queensu.ca for correspondence.
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Introduction

Consumers navigating online marketplaces typically search a variety of substitute goods before making

purchases. The sequence of these searches, captured through clickstream data, provides a window into the

decision-making process of consumers, revealing a “search set” of products considered before a purchase.1

Therefore, one way to infer consumers’ substitution patterns is to analyze the patterns of products that

consumers search for before making a purchase.

Understanding substitution patterns is imperative in order to, for example, evaluate the effects of price

changes or changes in market structure on consumer choices. The status quo approach, following the ideas of

Lancaster and McFadden (Lancaster (1966), McFadden (1973)), is to assume consumers have preferences over

the characteristics of products. With this approach substitution between products is dependent on proximity

in characteristic-space; products with similar characteristics are closer competitors since consumers value

their characteristics similarly. However, a key practical concern in many markets is whether easily observable

product characteristics indeed determine demand for a product. If demand-relevant characteristics are not

observed, substitution patterns derived using a characteristic-space approach will be unreliable.

This paper proposes a novel approach to estimating latent characteristics of products learned from search

data that can be used to augment models following the characteristic-space approach. The key rationale of

the approach is to treat each consumer i’s search set, Si, as their revealed consideration set. Since consumers

typically search for products that compete with the product they purchase, the latent characteristics learned

from these search data reflect all consumers’ underlying substitution patterns.

The main contribution of the paper is the approach taken in mapping search data to latent characteristics.

The search data come from a multicategory eCommerce platform, with a large number (≈60,000) of products.

Thus, Si may include products across different product categories, for instance because consumers browse

complementary products. In addition, the approach needs to be scalable to allow for estimation of latent

characteristics for many products. I take a simple reduced-form approach. I compute a simple pairwise index

of substitution based on the co-search frequency of a pair of products. Empirically, I find that consumers

are more likely to search for substitute products, since most search sets result in the purchase of only one

product.2 Thus, in this paper I do not try to explicitly measure complementarity, but the approach could

be easily extended by considering complementarity measures in addition to substitution. Using this index, I

use the t-distributed Stochastic Neighbour Embedding (t-SNE) method (van der Maaten and Hinton (2008))

to compute a vector representation of each product that rationalizes the substitution index, and take these

representations as each product’s latent characteristics. The index used is a pairwise measure of distance

between products that measures pairwise substitution, and the t-SNE method computes corresponding latent

characteristics such that distances based on the latent characteristics match the substitution index.
1These products constitute a subset of the consumer’s broader consideration set.
2In addition, most consumers (>80%) search products within one specific category. Search sets that result in multiple

purchases (<1%) are dropped from the analysis. Nevertheless, other search datasets, such as those for market baskets may
display higher rates of cross-category search and purchase.
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I demonstrate the efficacy of the approach in a few ways. First, in a data-driven manner, I augment

a sequential probabilistic demand model following the characteristic-space approach which aims to predict

which product j consumers will purchase given their previously searched products up to time t, Sit. In

this model, the probability of purchasing j depends on the interaction between j and each j′ ∈ Sit. That

is, each previously searched product affects the probability of purchase. Empirically, since consumers tend

to purchase a close substitute of their previously searched options, the interactions should reflect pairwise

substitution patterns. I test whether representing products using the learned latent characteristics improves

predictions, so that interactions between j, j′ are better determined by latent characteristics than observables

which better reflect substitution patterns. I show that using latent characteristic representations of products

in addition to observables leads to better predictions of purchase choices.

I also verify that the latent characteristics encode demand-relevant product characteristics. The products

that consumers search for are jointly determined by their own preferences and the platform’s search algorithm.

I show that the co-searches are not entirely determined by products that are searched close together in time,

so that the co-search rate picks up more than just the search algorithm’s recommendations. This fact is

also demonstrated visually, by showing that distances based on the latent characteristics do not create tight

clusters of products separated by the observed categories alone.

This approach is useful for analyses on markets where demand-relevant characteristics are not easily

obtainable, such as the market for books (Hong and Shum (2006)), movies, or even with online search data

such as the popular comScore web-browsing data where researches need to collect product characteristics

(Bronnenberg et al. (2016), Shiller (2020)). Additionally, the approach easily scales to large search data.

The predictive demand models are estimated using a clickstream dataset from a UK e-commerce platform,

that contains users’ sequences of clicks - and purchases, if any - onto different product pages. Using these

data I estimate demand-prediction models based on multinomial-logit and LightGBM (Ke et al. (2017)), a

cutting edge machine learning method. Each model uses different measures of substitution as outlined above

and their prediction performance are compared. I find that model rankings are consistent across both classes

of models.

To assess each model’s performance, I compare mean log-likelihoods across all observations in and out-

of-sample. The latent model achieves a log-likelihood of -0.1628 in-sample and -0.1627 out-of-sample. In

comparison, the baseline characteristics model achieves a log-likelihood of -0.1670 in-sample and -0.1679 out-

of-sample, illustrating that the latent model’s performance is comparable. Additionally, a combined model

using both observed and latent characteristics to represent products achieves a log-likelihood of -0.1612 in-

sample and -0.1603 out-of-sample. These results suggest that the approach based on co-search patterns picks

up demand-relevant characteristics of products that are not easily observed, especially since the combined

model shows a further performance improvement. Thus when demand-relevant product characteristics are

not available, using the JC measure to inform substitution is effective in building predictive demand models.

Since the latent model performs comparably to the characteristics model, this suggests that the JC measure
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can be used to effectively crowdsource substitution patterns even in the absence of demand-relevant char-

acteristics. Nonetheless, these approaches can be combined as in the combined model, so that when some

demand-relevant characteristics are available incorporating the JC measure into prediction models can still

lead to improvements in performance.

To support the findings from the empirical analysis, I conduct a Monte Carlo simulation. In each period

in the simulation setting, consumers are faced with the decision to either purchase a product in the product

space or an outside option. I simulate consumer search sequences using a sequential search model in the style

of Weitzman (1979). The DGP is designed to generate substitution patterns that depend on both observable

and unobservable characteristics. Thus, the simulation setting is one where the researcher observes demand-

relevant characteristics. Once these data are simulated, I estimate demand-prediction models identically

to the empirical analysis. In this simulation, the latent model performs significantly better in prediction

relative to the characteristics model, even when observing demand relevant characteristics. The product

space is smaller in the simulation than in the main empirical analysis, so that co-searches are more common

across all products. This suggests that the latent characteristics can perform even better in other empirical

settings where co-searches are common. This may be settings where researchers or platforms have access to

larger data, or cases with smaller product spaces.

Related Literature

This paper contributes to the literature on learning demand-relevant latent characteristics, which are often

computed through embedding algorithms (Rudolph et al. (2016), Liang et al. (2016), Barkan and Koenigstein

(2016)). The effectiveness of these latent characteristics hinges on their capacity to accurately represent

underlying consumer preferences. However, these characteristics may not adequately capture the impacts

of items already in a consumer’s basket, potentially failing to reflect true patterns of substitution and

complementarity. This issue is particularly prevalent in online market settings where essential drivers of

search like marketing influences are often unobserved. The Joint Consideration (JC) measure introduced

in this study addresses this gap by providing a robust method for constructing latent characteristics that

represent all consumers’ substitution patterns effectively.

The revealed preference approach used to compute the JC measure for measuring substitution is closely

related to the work by Armona et al. (2021), who also compute latent characteristics using search data

by computing an embedding. Their embedding relies on a revealed preference approach; products that

consumers search have higher utilities than products that were not searched resulting in a revealed preference

inequality for each pair of searched and unsearched products. This approach could lead to dimensionality

issues due in a setting with a many products, and in comparison the JC measure is very simple to compute.

Magnolfi et al. (2022) take a different empirical approach to compute embeddings by collecting survey

data in which respondents reveal their beliefs about cereals they perceive as similar in the form of triplet
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comparisons, which they apply to a triplet embedding algorithm (van der Maaten and Weinberger (2012)).

They use their computed embeddings as latent characteristics in a demand model, and show that using these

latent characteristics outperforms using observed characteristics in predicting aggregate shares.

The use of repeated decisions of consumers in identifying substitution patterns can also be seen in the

broader demand estimation literature. In the marketing literature, panel-data models of demand often in-

clude estimation of latent characteristics jointly with the parameters of the demand model (Elrod (1988),

Elrod and Keane (1995), Keane (1997)). Identification of the latent characteristics, which in these mod-

els represent market structure, comes from consumers who switch from one product to another over time

implying that they are substitutes. Since Berry et al. (1995), the characteristic-space approach has been

more widely used in the empirical industrial organization literature, and relies on consumer preferences over

product characteristics to determine substitution patterns. Within this framework, Berry et al. (2004) show

how to use repeated purchase data to better identify substitution patterns. More recently, the marketing

literature has devoted much effort in modeling consumer choices using search data, where a consumer’s

search process is explicitly modelled (De Los Santos et al. (2017), Ke and Villas-Boas (2019), Ursu et al.

(2020), Moraga-González et al. (2023)).3 In addition to the papers referenced above, Kim et al. (2011)

develop a method to estimate latent characteristics using search data and in addition estimate preferences

over these characteristics in a search model. As their results show, since most search models also follow

the characteristic-space approach in modelling utility, the use of latent characteristics leads to improved

model fit. My paper combines these ideas by estimating an easy-to-compute measure using search data that

represent consumers’ underlying substitution patterns and are explicitly included as explanatory variables

(latent characteristics) in a predictive demand model.

A few papers have used measures similar to the JC measure in other contexts. Kumar et al. (2020) apply a

heuristic similar to the JC measure in order to study product bundling. Using a clickstream dataset in which

they observe users’ shopping baskets they identify complements and substitutes using products purchased

together and products considered but not purchased together respectively. Note that the latter idea is used

in the definition of the JC measure. They use this method of categorizing complements and substitutes

to augment an embedding algorithm and study how to optimally bundle products using the embedding

representations of each product. Similarly, Ringel and Skiera (2016) use an asymmetric measure similar

to the JC measure to create a market map - a visualization of market structure in the LED TV market.

The measure is also similar to measures of ‘Mutual Information’ in the information retrieval literature (e.g.

Bouma (2009), Mikolov et al. (2013)). I view the findings in this paper as complimenting the literature’s

results by empirically investigating the relevance of search patterns in identifying substitution patterns for

models following the characteristic-space approach.

The literature also shows uses of measures similar to the JC measure for the case of repeated purchases.

Atalay et al. (2023) use the likelihood of a household ever purchasing both of a pair of products in the
3This is a rapidly expanding literature. The interested reader should see Honka et al. (2019) for a survey of the search and

consideration set literature and Ursu et al. (2023) for a recent survey of the sequential search literature.
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Nielsen market basket panel as an input to an agglomerative clustering method. They then treat each

computed cluster as a nest within a nested-logit demand model. To the best of my knowledge, my paper is

the first to use this kind of repeated co-search measure for the purpose of a predictive demand model that

takes past purchase behavior into account. Magnolfi et al. (2022) use a measure similar to the JC measure

based on repeated purchases as an input to the t-SNE method. They show that using these embeddings as

latent characteristics results in a better fitting demand model than using only observed characteristics, when

predicting aggregate shares in the ready-to-eat breakfast cereal market.

In addition to Atalay et al. (2023), other models in the emerging flexible demand estimation literature

employ search data to better inform substitution patterns. Donnelly et al. (2024) and Amano et al. (2022)

estimate a two-step consideration-then-choice demand model. The former paper estimates latent factors

of utility that drive substitution while the latter constrains the correlations in a component of utility to

rationalize product co-search patterns. Dotson et al. (2018) and Dotson et al. (2024) instead estimate

a multinomial probit choice model and allow the utility covariance structure to depend on the similarity

between products.

In order to evaluate the efficacy of the JC measure, I use it for explanatory variables in a demand

prediction model and observe the resulting demand prediction performance. A number of papers have

investigated models that fit and perform well in predicting demand. Bajari et al. (2015) apply several

methods to estimate demand for salty snacks from panel data for a grocery store chain. They compare

the fit of these methods as measured by RMSE and find that machine learning methods such as Random

Forest show substantially superior predictive accuracy compared to traditional statistical methods such as

linear/logistic regression. For brevity, I use just two methods for each choice of explanatory variables; logistic

regression and a very closely related algorithm to the Breiman (2001) Random Forest algorithm - LightGBM

developed by Ke et al. (2017). LightGBM and Random Forest are both aggregated tree-based methods

but differ in the way trees are constructed. LightGBM uses a more computationally feasible method in

constructing trees, which works well given that I use a very large dataset. I describe the details of this

method in the Methodology section. I show that the effective performance from using the JC measure

holds for both estimation methods. I also evaluate the models using two common measures of model fit

in the machine learning literature; the Area Under the Curve (AUC) of each model’s Receiver-Operating-

Characteristic (ROC) plots and an aggregated Cross-Entropy Loss4. Both measures of fit suggest the same

ranking of models as the misclassification rate.

There is a vast literature in predicting consumer choices for eCommerce. As clickstream data has become

more accessible to researchers, a number of recent papers have developed predictive demand models that can

use consumers’ past search choices to predict purchases. Recently in the marketing literature, such models

have been developed by improving upon existing machine learning methods (Gabel and Timoshenko (2022),

Jacobs et al. (2016)). These recent models allow for consumer preferences over goods in different categories
4Both measures of fit are explained in the Methodology section.
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by computing latent characteristics, often using embeddings, to represent all products in one characteristic-

space. The latent characteristics estimated using the JC measure in this paper accommodates for products

in different categories to affect purchase probabilities in this way. Earlier models often included additional

parameters to capture cross-category relationships (Manchanda et al. (1999), Russell and Petersen (2000)).

Ruiz et al. (2020) develop a model to predict the next item a consumer will choose for their shopping basket

given the set of items already chosen. The effect of products already in a basket on future choices is modelled

through a term capturing the effect of characteristics of products already in the basket. In contrast, the

model of Shiller (2020) measures the impact of past behavior on the probability of purchase using product

fixed effects.

While not directly focusing on price discrimination, this paper highlights the potential of using clickstream

data to develop predictive demand models, which is vital for strategies like personalized pricing. Dubé and

Misra (2023) develop a model of personalized pricing by estimating a demand equation using machine

learning methods to deal with dimensionality issues. Shiller (2020), Smith et al. (2023), Waldfogel (2015),

and Zhang et al. (2014) estimate individual level demand as a function of consumers’ observables and past

purchase behavior, and find large improvements in predicted revenues particularly when taking past purchase

behavior into account. By demonstrating the capability to extract demand-relevant latent characteristics

from clickstream data alone, this paper provides valuable insights for online retailers looking to optimize

demand prediction without extensive product characteristic data.

Data

I use a substantial clickstream dataset detailing consumer product browsing behaviors on a UK eCommerce

store during October and November 2019, available via the “Kaggle.com” data repository (Kechinov (2019)).

The specific identity of the eCommerce platform is undisclosed; however, a histogram of product categories,

shown in Figure 4 in the Appendix, provides insight into the platform’s product offerings. The dataset

encompasses detailed records of user interactions with product pages, classifying each interaction as one of

four event types: purchase, view, add-to-cart, remove-from-cart. Additionally, product characteristics data

such as price, main-category and sub-category labels, and brand are included. The latter three are used as

discrete characteristics, and log-price is used as a continuous characteristic.

The data are then transformed to construct search sets. I make use of a “session_id” variable; a user’s

events with the same session-id occurred during one continuous period of activity on the platform. I combine

multiple sessions from the same user into the same search spell under the following conditions: (a) the end

of the first session and the start of the next session are at-most 1 day apart, (b) the first session did not

result in a purchase, and (c) a majority of products in both sessions share a main-category. Note that this

potentially generates multiple search spells for each consumer. Next, I split search spells by purchase events.

Events up to and including a purchase event are treated as one search sequence, and events in the same
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session after a purchase event may be combined with events from subsequent sessions if the conditions above

are satisfied. Lastly, if this process leads to a search sequence that lasts longer than one week, it is dropped

entirely from the analysis.

A natural challenge with clickstream data for predictive modeling is that some observations capture

users at a late stage in the buying process. Typically, a user’s search history will show a view followed by

an add-to-cart event shortly before a purchase. Directly using this sequential information as explanatory

variables can increase the model’s prediction accuracy; however, it does not translate effectively into real-

world applications. For instance, if this model were used in real-time to trigger product advertisements,

these would likely reach users who have already decided to buy the product and are merely completing the

necessary purchasing steps. This scenario would render the advertisements redundant, potentially wasting

marketing resources. To circumvent this limitation, I ensure that the last event in the sequence of events

used to construct the search sequences is associated with a different product than the outcome event.

Methodology

Predictive-demand models play a crucial role in marketing by leveraging historical consumer behavior to

forecast future purchases. For instance, marketers often aim to predict which product j a consumer i is

likely to purchase, based on a set of products Si they have previously searched for the purpose of targeted

advertising or product recommendations.

The models considered in this paper follow this line of thinking. As mentioned previously, search sequences

in the dataset conclude with the purchase of one product, suggesting that the products within each sequence

are likely substitutes. Therefore, to effectively measure the interaction of each previously searched product

j′ ∈ Si with the purchase choice j, the substitutability of j, j′ should be considered. One can do this with

observed characteristics by considering proximity in observed characteristic-space. This kind of model serves

as the benchmark characteristics model in this paper.

However, this paper explores an innovative approach by estimating latent characteristics and consider-

ing substitution patterns through proximity in latent characteristic-space. These latent characteristics are

derived by mapping pairwise product co-search patterns, referred to as Joint Consideration (JC), to vector

representations of products. The construction of this Joint Consideration (JC) measure, the mapping to

latent characteristics, and their application in predictive models are detailed in the following sections. This

approach not only leads to high predictive accuracy but also provides deeper insights into how substitution

patterns can be learned from consumer search patterns.

Latent Characteristics

The primary contribution of this paper is the use of search data to learn demand-relevant latent characteris-

tics. The strategy is to first compute a simple pairwise measure of substitution derived from all consumers’
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search sets. Then, I estimate latent characteristics for each product that represent the pairwise substitution

measures. I refer to the substitution measure as the ”Joint Consideration” (JC) measure. This measure

leverages the entire dataset to crowdsource a broad understanding of consumers’ perception of substitute

goods. The rationale is that if products j and j′ are frequently in the same search sets among all users in

the data, then many users perceive them as competing products. So when evaluating whether a consumer

will purchase j, having observed the user browse j′ on the platform already should be informative of the

choice the user will make when considering j. This measure is similar to measures of “Mutual Information”

in the information retrieval literature, and similar to what is used by Ringel and Skiera (2016) to visualize

market structure.

A consumer i’s search set Si is defined as the collection of products associated with a “view” event before

a “purchase” event. The JC measure is calculated by first identifying all observed search sets. Note that the

dataset’s structure ensures that the purchased product is also tagged as viewed, thereby including it in the

search set.

The JC measure for a pair of products j and j′ is given by the following:

JC(j, j′) =

∑
i Gij ×Gij′∑

i Gij +Gij′ −Hijj′
, (1)

where Gij = 1(j ∈ Si) and Hijj′ = 1(j, j′ ∈ Si).

This generates a symmetric matrix JC. I next change this to its equivalent pairwise distance matrix,

1 − JC, and use it as an input to the t-SNE (van der Maaten and Hinton (2008)) embedding method.

This algorithm takes a distance measure as an input, and computes a low-dimensional vector representation

of each product such that the distances of products in the low-dimensional space reflect the inputted dis-

tance measure, thereby reducing the dimensionality of data while maintaining the relative distances between

points.5 The algorithm is as follows:

Define the similarity between j, j′ as

pjj′ =
exp(−d(j, j′)2/2σ2)∑
k 6=l exp(−d(k, l)2/2σ2)

.

Let xj be the l-dimensional vector representation of product j. Define the similarity between j, j′ in the low

dimensional space as

qjj′ =
exp(−‖xj − xj′‖2)∑
k 6=l exp(−‖xk − xl‖2)

.

Choose xj ’s that minimize the Kullback-Leibler divergence:

KL(P ||Q) =
∑
i

∑
j

pij log
pij
qij

.

5For complete details of the method, the interested reader should see van der Maaten and Hinton (2008).
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I use d(j, j′) = 1 − JC(j, j′) as the input distance measure in this algorithm. To gain intuition behind the

method, note that the KL-divergence determines how close the similarities qij that are based on the estimated

embeddings are to the similarities pij that are based on the JC measure. When these two similarities are

close, the contribution of pair i, j to the overall divergence is close to zero. The similarity pij is based on the

inputted distance measure, 1− JC(i, j), while the similarity qij is based on the euclidean distance between

the embeddings xi, xj . Putting these pieces together, the algorithm finds embeddings xj for all j such that

measuring similarity by comparing xj ’s matches the JC measure. The optimization problem is easily solved

by stochastic-gradient descent, even in my case with nearly 60,000 products.6

A practical concern is that the JC matrix may be sparse. There are 57,048 products in the data and so if

too few search sets are observed, there may be many pairs of products that are not observed to be co-searched

that might be with more data. Thus the resulting latent characteristics may be unreliable. This necessitates

using a large portion of the data to construct JC. Specifically, JC is constructed using the set of observed

search sets from roughly half of the data; the first month of data from October. More precisely, only search

sequences that end in October are used, which allows for a sufficiently dense JC matrix in my testing.7 The

models which use the JC measures are then restricted to be estimated on only data from November. This

also ensures that data from the latter month are not used to construct the measure which in turn is used to

predict purchases from the same month, which cannot occur in practice. The characteristics model, which

does not use the measure, is allowed to be estimated on the data from both months. This allows a fair

comparison in the sense that the models which do not use the JC measure do not need to set aside a portion

of the data to construct an explanatory variable.

Table 1: JC Measure Summary Statistics

Statistic Mean Std 25% 50% 75% 90% 99% Min Max

Unconditional JC 0.007 0.021 0.001 0.002 0.006 0.015 0.071 0.000 1.000
Within Search Set 0.010 0.023 0.001 0.002 0.007 0.027 0.115 0.000 1.000
Within Search Set (Weighted) 0.023 0.041 0.002 0.009 0.029 0.063 0.160 0.000 1.000

Table 1 provides summary statistics for the JC measure. The first row gives summary statistics for the

JC measure for all possible pairs of products. The second row instead restricts the pairs to those that appear

at-least once in a search set. Finally, the third row weights the statistics by the frequency with which each

pair of products appears in a search set. The JC measure for products within a search set typically are higher

than for any two products. Thus, after observing a user’s browsing history, it is sensible that a product with

a high JC measure is more likely to be purchased than those with a lower JC measure.
6I use the t-SNE implementation in the “scipy” Python package.
7I find that the visualization patterns in the next section tend to be uninformative when constructing JC with fewer and

fewer data.
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Table 3: Search Sequence Categories

Mean SD Max Share One

Num. Main-Categories 1.17 0.48 9.00 0.87
Num. Sub-Categories 1.34 0.89 34.00 0.79
Num. Brands 1.89 2.06 72.00 0.65

Table 4: Distribution of JC within categories

Main Category Mean SD
Electronics 0.001 0.017
Computers 0.002 0.022
Appliances 0.001 0.017
Construction 0.002 0.032
Auto 0.004 0.042
Furniture 0.001 0.027
Kids 0.002 0.032
Apparel 0.001 0.019
Sport 0.003 0.048
Stationary 0.014 0.109
Accessories 0.003 0.035
Medicine 0.072 0.208

Table 2: Search Sequences Summary Statistics

Statistic Mean Std 25p 50p 75p 90p Min Max

Number of Events 7.67 12.62 3.00 4.00 8.00 16.00 1.00 933.00
Number of Products 3.39 5.37 1.00 2.00 3.00 7.00 1.00 301.00
Duration (Hours) 18.32 37.33 0.02 0.10 16.52 73.81 0.00* 168.00
* 139,741 sequences only consist of one search or one purchase and have a duration of 0.

Table 2 provides summary statistics on the 1,211,593 observed search sequences from both months of

data. Search sequences are typically short; the 75th percentile of the number of events in a sequence is 13,

and is 9 for the number of products in a sequence. Most search sequences end in a short time period, with

the 50th percentile for search duration at 2.44 hours. Table 3 shows the degree to which search occurs across

product categories and brands.

Around 79% of search sequences correspond to search within only one sub-category. This is not surprising

since the eCommerce platform’s own search ranking algorithm and product recommendations help shape

consumers’ search sets. Thus a natural question to ask is whether the JC measure is similar across all pairs

of products within a category, which would suggest that JC does not provide useful information beyond

product categories. Table 4 shows the mean and spread of the distribution of JC measures for pairs of

products that share a main-category.

JC measures remain small in magnitude even for pairs of products within categories, but there is con-
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siderable dispersion relative to the magnitudes of JC measures. As the visualization below further suggests,

measuring substitution using JC measures does not tightly cluster all products within a category together.

Visualization of Substitution Patterns

To visualize differences in the substitution measures used in the paper, I apply the t-distributed Stochastic

Neighbour Embedding (t-SNE) algorithm (van der Maaten and Hinton (2008)) to a measure of distance based

on the observed characteristics, and compare them to the embeddings based on the JC measure, in both

cases computing 2-dimensional embeddings. When the embeddings are plotted, they often reveal clusters

in high-dimensional data, making it ideal for visualizing complex relationships like product substitution

analyzed in this paper(van der Maaten and Hinton (2008)).

The observed characteristics are a mix of qualitative and quantitative variables. Therefore, I use Gower’s

measure (Gower (1971)) to find the distance between two products as it can accommodate both qualitative

and quantitative data as characteristics. If each product has p characteristics indexed by a, the distance

between products xj = (xj,1, ..., xj,p) and xk = (xk,1, ..., xk,p) is given by the following:

DObserved(j, k) =
1

p

p∑
i=1

da(xj , xk), (2)

da(xj , xk) = 1(xj,a 6= xk,a) when a is qualitative, (3)

da(xj , xk) =
|xj,a − xk,a|

Ra
when a is quantitative, (4)

where Ra is the range of characteristic a in the data. The two-dimensional embeddings when using the

JC measure are computed as described in the previous section.

Visual inspection of the positions of points representing each product in Figures 1 and 2 illustrates distinct

differences between the two distance measures used. As discussed previously, each of the embeddings aim

to identify substitute products as those with a small distance, which in these Figures will be represented by

points close in the two-dimensional Euclidean space. Thus, any differences in identifying substitutes for each

distance measure will be revealed by visual differences in each two-dimensional embedding.

Some interesting differences between using DObserved and DJC are apparent. First, DObserved results in

clusters where products within a cluster are generally within a product category. DJC results in regions

of points with products sharing a product category, but these regions are both not as tight, and are not

separated as drastically as with DObserved. This suggests that the latent characteristics are picking up on

substitution patterns that are not captured by simply comparing product categories and prices. As is shown

later, demand prediction benefits from using latent characteristic representations of products with suggests

that these substitution patterns that DJC captures come about due to demand-relevant characteristics not

captured by the observed characteristics.
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Figure 1: Observed characteristics
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Figure 2: JC Measure

Evolution of Searched Characteristics

Table 5 presents mean values for the observed product characteristics and JC measure, conditioned on

the outcome of the previous event. For example, if the most recent event is a purchase, the outcome

product shares the main category with the most recent event’s product in 60.4% of observations, compared

to 68.1% following non-purchase events. Thus, as consumers are browsing products, they substitute away

13



Table 5: Conditional Means of Explanatory Variables

Outcome of Previous Event

Variable Purchase Non-purchase

Main Category 0.604 0.681
Sub Category 0.535 0.622
Brand 0.765 0.470
JC 0.358 0.573

The proportion of purchases is 0.065 and the
mean price is £374.82.

from products in the same main category more aggressively after a purchase. The same pattern is true

for the subcategory of the product and the JC measure. However, the brand of the product exhibits the

opposite trend, suggestive of a persistent brand value effect. This suggests a pattern in search behavior:

once a satisfactory product within a category is purchased, search often shifts to a different product type.

Equivalently, consumers tend to browse products close in characteristic-space before making a purchase

decision.

To further investigate, I now show patterns in the characteristics of searched products up to and including

the purchased product - products within a search set Si. Specifically, I test whether a finding from Bron-

nenberg et al. (2016), or BKM for short, holds when using latent characteristics. BKM find that consumers

converge over their search spells in characteristic space to their purchase choice. If the latent characteristics

indeed are demand-relevant, the same pattern should hold as well. Otherwise, substitution patterns ob-

tained by comparing latent characteristics would not suggest that consumers browse close substitutes prior

to purchase. For this test I use the estimated latent characteristics with l = 3, and show convergence in the

price and three dimensions of latent characteristics. Figure 3 shows that BKM’s finding holds even when

representing products with latent characteristics.

In summary, the most recent events tend to correspond to products that share characteristics with that of

the outcome variable, and changes in search behavior depend on whether the consumer has decided to make

a purchase. I take this as evidence of the patterns that the latent characteristics pick up - consumers tend

to search products that compete with the product they purchase and so latent characteristics of co-searched

products should be similar.

Demand Prediction

This section estimates a simple demand prediction model that showcases the ability of the learned latent

characteristics to pick up on substitution patterns. The model follows the characteristic-space approach

to representing products, denoted xj , and allows for previously searched products to influence consumers’

purchase probabilities. The three models estimated are differentiated by the characteristics included in xj :
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Figure 3: Covergence in Prices and Embedding Space
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This plots a search-level local polynomial regression of differences in characteristics of searched and eventually-purchased
products on search percentile. They are estimated using the default tuning parameters in Stata with an epanechnikov kernel.
Search percentile is the relative position of each search within its sequence, defined as the ratio of search number divided by
total searches in the sequence.

1. Characteristics Model: xj is based on the observed characteristics, and includes dummy variables

for each of the three qualitative characteristics (main-category, sub-category, brand) and price.

2. Latent Model: xj is the vector of price and the latent characteristics learned from the search data.

3. Characteristics and Latent Model: xj includes both observed characteristics and latent charac-

teristics.

The exercise is to compare model fit and prediction performance between each of the models so as to judge

the ability of latent characteristics to encode demand-relevant information.

The general model to be estimated is a probabilistic model of purchase, or in the language of computer

science, a recommender system, and is framed as a multinomial logit model of demand. Specifically, the

objective is to determine the product j that the consumer would be most likely to purchase, given the set of

M products St,M = {xt1, . . . , xtM} that the consumer has previously searched (but not yet purchased). Note

that this is only a subset of the consumer’s search set Si. Let J denote the set of all products. Formally,

we wish to assign a probability of purchase P (j|St,M ) for each possible j ∈ J . It is reasonable to assume

that the consumer’s choice of j depends on the set of previously searched products since learning about their

preferences from previously searched products may inform the consumer about other similar products. For

instance, see recent work in the empirical search literature (Hodgson and Lewis (2023)). Motivated by the
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scale of the data, I take a more reduced-form approach than writing down a complete structural model of

search and purchase. I posit that the consumer’s utility from choice j is given by

U(j, St,M ) = f(j|St,M ) + ξjt (5)

Here, f(j|St,M ) is the deterministic part of utility dependent on the chosen product j and the set of previously

searched items St,M , and ξjt is a logit error term. Thus, purchase probabilities are given by

P (j|St,M ) =
exp(f(j|St,M ))∑

k∈J exp(f(k|St,M ))
(6)

Each product is represented by a vector of characteristics xj . I assume the functional form of f() is given by

f(j|St,m) = βTxj + γd(xj , x̃t), (7)

where d(xj , xk) =
(∑

a ωa(xja − xka)
2
)1/2 is a weighted measure of distance in characteristic space of prod-

ucts j, k. The weights allow the model to flexibly determine the most important characteristics, a, that

determine substitution patterns. It also controls for the fact that different characteristics may have different

scales. The products in each search set St,m are aggregated and represented by the vector x̃t, which has the

typical element

x̃tk =

Mo(xtmk) if k is discrete

x̄tmk if k is continuous
, (8)

where Mo(xtmk) denotes the mode of characteristic k across all m ∈ St,m, and x̄tmk similarly denotes the

mean.

The parameter β captures preferences over both prices and non-price product characteristics. I assume

the relation between each pair of xj and xtm ∈ St,M is captured by the term γd(xj , x̃t). That is, purchase

choices depend on the proximity within characteristic space of the purchase choice and all previously searched

products. The parameter vector γ captures the degree to which distance affects utility. Note that the utility

from a “No-Purchase” outside option denoted j = 0 is normalized to zero.

The inclusion of this distance measure in the utility specification is motivated by theoretical and empirical

findings in the literature. Search theory would suggest that purchase options close in characteristic space

to past searched products have a higher likelihood of being purchased; consumers are unlikely to purchase

a wildly different product to what they have been considering. Empirically, Bronnenberg et al. (2016)

show that consumers converge in characteristic space over their search spells to their purchased products.

I replicate this finding in Figure 3. Thus, the purchased product is likely to be a close substitute to past

searched products. Accordingly, we would expect that γ is negative. This parameter is identified by variation

in the distance between purchase choices and previously searched products.
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With this framework in mind, the model is a multinomial logit model of purchase that aims to estimate

the parameters ϕ = (βT , γ, ω). The model is estimated by maximum likelihood. The main computational

challenge in estimation is that the denominator of 6 requires summing over many exponentials. Instead of

evaluating the exact log-likelihood, I estimate the model using a lower bound of the exact log-likelihood as

in Titsias (2016). Specifically, they show empirically that the parameters that maximize the lower bound

also maximize the exact log-likelihood. The advantage of the approach is that the lower-bound is easier to

compute.

Note that endogeneity of prices may be present since prices for j and each j′ ∈ St,m are included in

the specification. Thus, the model cannot answer counterfactual questions related to prices.8 This is not

a problem for the exercise here, since the goal is to judge the improvement in prediction performance from

including the latent characteristics in xj .

Estimation Details

This section describes the implementation of the approximate log-likelihood procedure used to estimate the

model. Titsias (2016) show that a lower bound to the purchase probabilities in Eq. 6 is given by

P (j|St,M ) ≥
∏

k∈J\j

σ(f(j|St,M )− f(k|St,M )), (9)

where σ(x) = 1
1+e−x is the sigmoid function. The exact likelihood is given by

L(ϕ) =

T∏
t=1

P (jt|St,M ). (10)

Plugging in the lower bound gives

L(ϕ) ≥
T∏

t=1

∏
k∈J\jt

σ(f(jt|St,M )− f(k|St,M )). (11)

Finally, taking logs we obtain the lower bound on the exact log-likelihood.

logL(ϕ) ≥
T∑

t=1

∑
k∈J\jt

log (σ(f(jt|St,M )− f(k|St,M ))) = log l(ϕ) (12)

I obtain an unbiased estimate of the lower-bound by subsampling observations t and products k over which

the inner summation is calculcated. Specifically, each evaluation of the log-likelihood samples a set BT of

observations. Each evaluation of the log-likelihood of an individual observation - the inner summation -
8This is partially due to data limitations. I cannot obtain reasonable price instruments with the data at hand. However,

with other clickstream data researchers have access to such as the comScore web-browsing panel, or the sophisticated data
eCommerce platforms have, the same exercise could be done while estimating a BLP-type demand model.
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samples a set Bt
J of products. The unbiased estimate is given by

log l(ϕ) =
T

|BT |
∑
t∈BT

J

|Bt
J |

∑
k∈Bt

J

log (σ(f(jt|St,M )− f(k|St,M ))) . (13)

I set |BT | = 10000 and |Bt
J | = 1000.

Regularization

Since the objective is prediction we must also deal with the issue of overfitting. Logit models in particular

are prone to overfitting when the number of parameters is relatively high (Hastie et al. (2001)), which may

be an issue for the characteristics and latent model in particular. I employ L2 regularization, also known as

ridge regularization, to deal with this issue. L2 regularization applies a penalty term given by the size of

the estimated parameters which has the effect of shrinking the parameters closer to zero, thus reducing the

number of explanatory variables that have a large impact on the prediction. Thus, it becomes less likely that

irrelevant explanatory variables can be used to greatly influence predictions and thus overfit the model. The

L2 regularization technique chooses parameters by solving the optimization problem given by the following:

ϕ̂ = argmin
ϕ

− log l(ϕ) + λ
∑
i

|ϕi|2, (14)

where λ is a tuning parameter that controls the importance of the L2 penalty term. A higher value of λ

corresponds to a more aggressive penalty. I choose the value of λ that minimizes the misclassification rate

in the validation sample by grid search over the values {0.1, 0.2, . . . , 1} independently for each multinomial

logit model.

Gradient Boosted Random Forests

I also validate whether a more sophisticated algorithm from the machine learning literature designed for

prediction also benefits from representing products using learned latent characteristics. For instance, one

may worry that a model better suited to predictions may be able to flexibly pick up substitution patterns

from observed characteristics alone.

LightGBM, developed by Ke et al. (2017), is a very similar estimation procedure to the more popular

random forest model of Breiman (2001). The LightGBM model differs in the estimation of a classification

tree fb in step 2 (b) below and the use of gradient boosting. In the Breiman (2001) random forest model,

estimation of classification trees is based on the CART algorithm. In the LightGBM model, estimation is

based on a “leaf-first” method. The leaf-first method is much cheaper computationally, and generally leads

to better results. Each tree is also estimated through a gradient boosting procedure, which the literature has

shown to work better than the simpler Random Forest model (Hastie et al. (2001)). The interested reader

should see Breiman (2001) and Ke et al. (2017) for details on these tree estimation methods.
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I briefly describe the LightGBM algorithm below.

1. Sample, with replacement, B training samples (yb, Xb).

2. For each b in B

(a) Randomly sample from the set of predictors Xb.

(b) Estimate a classification tree fb on sample (yb, Xb).

3. The final prediction is given by f̂ = 1( 1
B

∑B
b=1 fb(yb, Xb) ≥ 0.5), or in other words majority vote.

In addition to the evidence in the literature (Bajari et al. (2015)) that random forest models work well

in predicting demand, they are typically robust to over-fitting issues (Hastie et al. (2001)). Since the set

of predictors is randomly sampled in each tree, and the predictions of the trees are aggregated, there is a

low chance that any tree which overfits the data to a set of irrelevant variables significantly influences the

aggregated prediction. The same applies to the LightGBM model as well.

The LightGBM model has a very large number of tuning parameters. I use the “LightGBM Classifier”

from Python’s “LightGBM” package. Following the recommendations of Ke et al. (2017), I set the majority

of tuning parameters to the default values, but increase the number of trees estimated, B, to 500 and decrease

the learning rate to 0.01. Both these changes have the effect of increasing the effectiveness of the predictions.

For a full discussion of all tuning parameters, see Ke et al. (2017).

For all methods, I randomly sample 50% of observations as the training sample, 25% of the observations

as the validation sample, and the remaining 25% of observations are used as the test sample. The validation

sample is used to assess the sensitivity of the results to the choice of the dimension of the latent characteristic

vectors k and to choose λ for the logistic regression model.

Results

As mentioned in the methodology section, the estimated latent characteristics are evaluated on their ability

to capture substitution patterns in a reduced-form demand prediction model. The model is set up so that

past-searched products affect the probability of purchase, following the rationale that consumers are more

likely to purchase a product that competes with what they have previously searched for. In the model,

competing (substitute) products are determined by their distance in characteristic space. Thus, the exercise

is to judge which characteristics best represent products when proximity in characteristic space directly

affects the model’s fit; observed characteristics, latent characteristics, or both.

Table 6 presents the in and out-of-sample fit across all three models based on the average log-likelihood

and average Cross-Entropy Loss. The Cross-Entropy Loss of an individual observation i, CELi, is equivalent

to the log-likelihood contribution of a single observation. This measure indicates how well the predicted
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Table 6: In and Out-of-Sample Fit

Multinomial Logit LightGBM

Model In-Sample Out-of-Sample In-Sample Out-of-Sample

Characteristics -0.1670 -0.1679 -0.1847 -0.1895
Latent -0.1628 -0.1627 -0.1885 -0.1848
Characteristics and Latent -0.1612 -0.1603 -0.1799 -0.1825

Multinomial Logit results are average log-likelihoods across observations in and out-of-
sample. LightGBM results are the average cross-entropy loss across observations in and
out-of-sample.

probabilities approximate the underlying purchase decisions. Let dij be an indicator variable that is one

when observation i corresponds to a purchase of j. Then the Cross-Entropy Loss is given by Eq. 15:

CELi =
∑
j

dij log(p̂ij) (15)

The first comparison of interest is between the characteristics and latent models. The latent model per-

forms significantly better than the Characteristics model, and using the latent charactersitics along with

observed characteristics leads to the best fitting model. I view these results as validating the approach.

The latent characteristics encode demand relevant information, since measuring the impact of past search

behavior on purchase choices through distance in latent characteristic space meaningfully improves predic-

tions. Further, that predictions are further improved when used in conjunction with observed characteristics

suggests that the latent characteristics capture substitution patterns that cannot be captured by observed

characteristics alone.

Recall the pattern of the summary statistics in Table 5 that products in the most recent events have

relatively high JC measures with the outcome product. In combination with these results, they suggest

that in predicting the purchase of product j, observing the user having browsed products which are close

substitutes as per the JC measure is informative of consumers’ purchase decisions. Thus, two use cases seem

apparent for this approach. Since the latent model performs comparably, if demand relevant characteristics

data were not available to researchers, then these results suggest that learning latent characteristics that

rationalize substitution patterns revealed through search behavior can be used to build an effective predictive

model. In addition, the results suggest that JC captures substitution patterns that observed characteristics

may not capture. Thus, even in a case with some demand-relevant characteristics, the approach may pick

up substitution patterns that cannot easily be captured by an observed characteristic. For instance, in the

market for books or movies, not all demand-relevant characteristics are salient and easy to measure, in which

case this approach can be useful.
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Monte Carlo Simulation

As a second check on the effectiveness of the JC measure in the predictive models, I conduct a similar

analysis as before using search data simulated via a Weitzman (1979) style sequential search model. In the

simulations users search across available products with uncertain utilities until they find a sufficient product

to purchase, which includes the outside option with a known utility normalized to zero.

In each repetition, I simulate one search sequence for each of 100,000 consumers indexed by i. There are

64 products in the product space, each assigned one of four main-categories (mc), one of four sub-categories

(sc), and one of four brands (b). Consumer i’s utility for product j is given by

uij = αmc
i + βsc

i + γb
i − pj + εij + µj .

Here αmc
i is the utility to consumer i in period t of purchasing a product within main-category mc. Similarly,

βsc
i is the utility of sub-category sc, and γb

i the utility of brand b. The consumer knows the value of these

three components, so that they know how much they generally value all products in a category from a specific

brand. The term εij is an idiosyncratic shock that is known to consumers prior to search. The utility from

the unobservable characteristic µj is unknown. Thus, it can be thought of as the unobserved quality of

the product. This structure generates substitution patterns between products that are explained by both

observed and unobserved characteristics. Both shocks ε, µ are i.i.d. drawn from N(0, 1). Consumers can

search each period, at a cost c, for a specific product j to learn the value of µj . The consumer can purchase

any previously searched options and can always purchase the outside option without paying any cost. Denote

the set of products the consumer has not yet searched at time t by S̄it and the highest realized utility by u∗
it.

The consumer’s problem is a dynamic programming problem described by the following Bellman equation:

V (S̄it, u
∗
it) = max{u∗

it,max
j∈S̄it

{−c+ V (S̄it+1, u
∗
it+1)}}.

Every period, the consumer must decide between purchasing the product with the highest realized reward, or

searching one of the unsearched products by paying cost c. The process stops when the consumer purchases a

product. This is a classic characterization of search based on Weitzman (1979), which outlines the consumer’s

optimal search and purchase choices. Optimal behavior depends on reservation utilities zij defined by:

∫ ∞

zij

(uij − zij)dFij(uij) = c,

which in the above utility specification results in the following equation:

zij = αmc
i + βsc

i + γb
i − pj + εij +m(c),
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where the value of m(c) is obtained by solving the following equation:

c = φ(m) +m× Φ(m)−m.

The reservation utilities are those values that equate the cost of searching j with the expected benefit of

searching j when the consumer can receive zij with certainty. That is, they describe the opportunity cost of

searching j. Optimal behavior is then described by the following three rules:

• Selection Rule: The consumer ranks all unsearched options by their reservation utilities zij , and

searches in decreasing order of reservation utilities.

• Stopping Rule: The consumer stops search when the highest realized utility is greater than the

highest reservation utility of unsearched options.

• Choice Rule: When the consumer stops search, they choose the product with the highest realized

utility.

After simulating 100,000 search sequences once, I compute the corresponding latent characteristics for

each product. I then simulate another 100,000 search sequences which are used for estimating each of the

three prediction models as in the main analysis.

This simulation has a few advantages over the main empirical analysis. First, it allows me to verify that

the JC measure is capturing substitutability between products that comes from information unobservable

to the researcher. The characteristics in the utility DGP are all observed apart from the unobserved shocks.

Thus, the characteristics model includes most demand-relevant characteristics so that the latent model will

perform well relative to the characteristics model only if it effectively captures the degree of substitution

between products with similar values for unobserved quality. This would also imply that the characteristics

plus latent model should lead to an improvement relative to the characteristics model. In the main analysis,

one might also be concerned that the observed characteristics are not so demand relevant, so that the

improvement in predictions found in the main analysis is larger than one might expect in other settings. The

simulation results can speak to whether the latent characteristics are really comparable to demand-relevant

characteristics. In addition, the simulation allows for the calculation of confidence intervals. The results in

Table 7 present the mean log-likelihood, as well as confidence intervals using the 2.5th and 97.5th percentile

of log-likelihood across all repetitions.

The simulation results exhibit the same patterns as in the main analysis. The latent model performs

comparably to the characteristics model across all fit metrics, and the characteristics and latent model leads

to an improvement in performance. Confidence intervals for the models using latent characteristics are

relatively wide, but nonetheless support the claim that performance is better than the characteristics model.

We cannot however, differentiate the performance of the latent model with the characteristics and latent

model. Together, this suggests that the latent characteristics are driving the majority of the improvement
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Table 7: In and Out-of-Sample Fit

Multinomial Logit

Model In-Sample Out-of-Sample

Characteristics -0.4302 -0.4261
[-0.4201,-0.4434] [-0.4149,-0.4383]

Latent -0.0477 -0.0492
[-0.0421,-0.1937] [-0.0483,-0.2091]

Characteristics and Latent -0.0391 -0.0406
[-0.0219,-0.2562] [-0.0255,-0.2574]

These results are average log-likelihoods across observations in
and out-of-sample. Confidence intervals report the 5th and 95th
percentile of average log-likelihoods across all 10,000 repetitions.

in performance.

One interesting difference to the main analysis is that the latent models performance is an order of

magnitude better than the characteristics model. This is likely due to the smaller product space in the

empirical analysis, so that co-searches are more commonly observed across all products. This allows the

latent characteristics to represent substitution patterns very well. This suggests that performance would

scale well in other applications with more data or smaller product spaces, where we would find a less sparse

JC matrix. To conclude, these results support the findings of the empirical analysis.

Conclusion and Managerial Implications

In this paper I present a method to extract substitution patterns of consumers using product search data.

I construct a measure, called JC, of substitution between products by aggregating consumers’ search sets,

effectively crowdsourcing information on substitution patterns. I then map the JC measure to a set of latent

characteristics that represent each product, so that comparing products’ latent characteristics reflects the

JC measure. To demonstrate the latent characteristics’ utility, I use them in a predictive demand model in

which users’ previous search choices affect purchase decisions. I show that by effectively capturing the degree

of substitution between two products relative to observed characteristics, the JC measure alone can be used

to effectively predict purchases even when demand relevant product characteristics are not available. I also

find that prediction performance is highest when both measures are used together.

To support these findings, I carry out a Monte Carlo simulation procedure in which users sequentially

browse through products using a Weitzman (1979) style sequential search model. Then, applying the same

methods as in the empirical analysis, I show that the results in the simulation are consistent with those of

the empirical analysis. The simulation also suggests that the latent characteristics pick up on substitution
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patterns that cannot be explained by observed characteristics, even when they may be demand-relevant.

Lastly, the simulation results suggest that the approach would scale well to larger search data.

Together these results suggest that the JC-based latent characteristics effectively capture the degree of

substitution between products. The results of the paper highlight a specific use-case in improving the predic-

tive accuracy of a probabilistic demand model. However, together with the descriptive evidence comparing

observed and latent characteristics the paper shows that they can be used more generally as an effective

measure of substitution when detailed product characteristics data are not available. They can be used in a

variety of applications, such as in the construction of recommender systems like the model developed in this

paper, and in the design of marketing strategies. By identifying products that are close substitutes, firms can

target marketing campaigns to consumers who have previously browsed these products. In addition, the JC

measure can be used to construct recommender systems. By identifying products that are close substitutes,

firms can recommend, for example through advertisements or the order of the user’s search results, products

that are likely to be purchased given the consumer’s history of product browsing. This can increase the

likelihood of a purchase and improve the user experience by enabling users to more quickly reach products

they are interested in.
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Appendix

Figure 4: Main Categories of Products
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